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Fig .  3. Dependence o f  X on T f o r  the m a t e r i a l  s tud ied  in  
the two temperature ranges, K: a) 275-675; b) 675-875. 

It is, moreover, lower than that of pure aluminum oxide. This is explained by the presence 
in the test material, apart from aluminum oxide, of other specially chosen components which 
also give it the necessary durability and guarantee high production effectiveness in the 
manufacture of various heat-reflecting components and coatings. 

NOTATION 

%(T), temperature dependence of thermal conductivity; ~, quantity introduced by Kirch- 
hoff substitution; Tmin, Tmax, bounds of the temperature range; E, difference value; s, numbe~ 
of intervals; RC, thermal contact resistance; C, undefined constant; x, spatial coordinate; L~ 
length; q, heat flux density. 

6. A. S. Okhotina (ed.), The Thermal Conductivity of Solids: 
Moscow (1984). 
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Reference Book [in Russian], 

CALCULATION OF THE DIFFUSION COEFFICIENTS OF ALKALI AND ALKALI-EARTH 

METAL VAPOR IN HELIUM BY EXCHANGE PERTURBATION ANALYSIS 

K. M. Aref'ev and N. B. Balashova UDC 535.15 

The potential energy of metal-helium interaction is calculated by the quantum- 
mechanical exchange perturbation theory. The results are used to calculate the 
diffusion coefficient of alkali and alkali-earth metal vapor in helium. The 
values of the saturated-vapor pressure of barium at ]170-1420 K are refined 
from a comparison with experimental diffusion data. 

Calculation of the diffusion coefficient of monoatomic vapor of metals in helium from 
the formula of the first-approximation Enskog-Chapman theory [i] 

pD n 3 -1/2~ (kT)3/m12 ( 1 ) 
16~ ~2 0(~,~)* u 1 2 - - 1 2  

r e q u i r e s  t h a t  t h e  p o t e n t i a l  e n e r g y  ~ (R)  o f  t h e  i n t e r a t o m i c  i n t e r a c t i o n  be known. The r e d u c e d  
c o l l i s i o n  i n t e g r a l  ~12 (1 ,  1)* and t h e  c r o s s  s e c t i o n  Q]~'l)~ff~2Q(z,1)* depend on t h i s  e n e r g y .  
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The main contribution to the cross section Q12(z, l) comes from the potential-energy range 

roughly from fractions of the calculation temperature T to 4T. The potential ~(R) can be 
calculated by quantum-mechanical methods in the Born-Oppenheimer approximation of arrested 
atomic nuclei [2]. 

Complete nonempirical quantum-mechanical calculations by the Hartree-Fock self-consist- 
ent field method with the molecular electron orbitals represented by linear combinations 
of the respective atomic orbitals are extremely complicated in regard to computation, espec- 
ially when the configuration interaction (CI) is incorporated. This must be done to determine 
the potential energy correctly at large interatomic distances and to refine its values at 
small and intermediate distances. The number of such calculations is limited. For the cases 
of interest to us, i.e., interaction with helium atoms, nonempirical calculations incorporat- 
ing CI have been done for lithium [3] and magnesium atoms [4, 5] and without CI for lithium, 
sodium [6] and beryllium [7]. Semi-empirical quantum-mechanical calculations have also been 
carried out for the interaction with helium atoms of atoms of all alkali metals and magnesium 
(e.g., [8,9]). All such calculations are variational and require much computer time. 

At the same time a number of simpler versions of the nonempirical exchange perturbation 
theory (EPT) [2, i0] have been developed, making it possible to calculate the potential in- 
teraction energy at intermediate as well as long distances. This theory takes the over- 
lapping of electron shells of atoms into account and the interaction of the shells is treated 
as a perturbation, thus far EPT has been used only to calculate interactions in the simplest 
systems (e.g., He--He,H+-H, H-H) [I0, ii]. The more complex Cs-He and Rb-He systems were 
calculated in [12], but for large distances (R > 7a u.). 

Exchange perturbation theory can be used in calculations of the potential ~(R) of the 
interaction of alkali and alkali-earth metals with helium atoms in order to determine the 
cross section Qz2(z, I) and in subsequent calculations of the diffusion coefficients from 

Eq. (i). As in the calculations in [5, 8], in this case only the interaction of the valence 
electrons of a metal atom (one electron in the case of alkali metals and two in the case 
of alkali-earth metals) with two electrons of a helium atom can be taken into account expli- 
citely. Valence electrons and a positively charged core are thus distinguished in the metal 
atom. The (Coulomb and exchange) interaction of the valence electrons and the core elec- 
trons as well as the all-electron wave function orthogonality are taken into account by 
introducing pseudopotentials U(r) and valence electron pseudofunctions, e.g., of the type 
in [13]. The valence electron pseudofunctions are constructed so that at distances greater 
than the core radius they coincide with the Hartree-Fock electron functions and are uncondi- 
tional (nonoscillating) at shorter distances. When the pseudopotential has been introduced 
the law of electron-core attraction becomes -Za/r + U(r). In our calculations we use the 
pseudopotentials and valenace electron pseudofunctions from [13], where they are given as 
expansions in the Gaussian functions. A characteristic feature of the Gaussian functions 
is that they depend exponentially on the squared distance to the electron. 

The problem is formulated in the Born-Oppenheimer approximation, while the Hamiltonian 
of a system of two atoms is represented as the sum of the Hamiltonians of the isolated atoms 
and the perturbation operator V. In the atomic system of units 

N b N e Na ,V h 

f=l~il ~ f'aJ / ~I=~ rbs E=I f~l ri7 ]~ 

S u b s c r i p t  a p e r t a i n s  t o  t h e  m e t a l  a t o m ;  b t o  t h e  h e l i u m  a t o m ;  i a n d  j c o r r e s p o n d  t o  e l e c t r o n s  
o f  a t o m s  a a n d  b ,  r e s p e c t i v e l y ;  Z b = N h = 2 .  

The perturbation operation written takes into account the Coulomb interaction of helium 
electrons with the core of the metal and isolated valence electrons of the metal with the 
helium nucleus, as well as valence electrons of the metal atom and electrons of the helium 
atom, the metal core, and the helium nucleus. An operator for the transposition of electrons 
between atoms is introduced into the wave function of the system to incorporate the exchange 
repulsive interaction of atoms at intermediate distances, when the electron orbitals overlap 
[2, i0, 14]. 

We carry out specific calculations using an EPT technique [14] (the varius versions 
of the EPT, as a rule, lead to identical results up to the second approximation inclusively 
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and subsequent approximation make an insignificant contribution to ~(R) [2]). In [14] the 
interatomic potential is written as the series 

q ) ( R ) - ~ - - E - - ( E a  + Eb) = E clo~ ~- E (lz~ + E Czol -7 E ~ @ .. . .  (2) 

where E is the total energy of the system; and E~ and E b are the energies of isolated atoms. 
The first superscript at the terms of the expansion on the right side of (2) denotes the order 
of the approximation in the perturbation operator and the second superscript, in the overlap 
integral of the wave functions of the metal valence electrons and the helium electrons. 

The first two terms in the expansion (2) are calculated from the formulas 

E(lO~ = I VFoV~Fod.~, 

where  ~0 i s  t h e  p r o d u c t  o f  t h e  wave f u n c t i o n s  ~o and ~0 b o f  i s o l a t e d  a t o m s ;  P~ i s  an o p e r a t o r  
which acts on ~0 by transposing valence electrons between interacting atoms (one electron 
in each transposition). The integration is carried out over the entire configuration space 

IVa fiN b of the isolated electrons, where d~ = d~ i is a differential element of this space. 
=I 

The term E (I~ has the connotation of electrostatic energy and E (12) is the exchanged energy. 

The approximation of Unsold [15] is used to calculate the third and fourth terms in (2) as 

i' ^2 ECHO, 1 [.! ~FoV ~god ~ -  ([,FolT~od~)21 ' 
AE 

(3) 

AE 

where  E ( 2 ~  i s  t h e  p o l a r i z a t i o n  e n e r g y  and E (22)  i s  t h e  e x c h a n g e - p o l a r i z a t i o n  e n e r g y .  The 
mean Unso ld  e n e r g y  hE i s  c h o s e n  so  t h a t  a t  l a r g e  d i s t a n c e s  E ( 2 ~  c a l c u l a t e d  f rom Eq. (3 )  

would c o i n c i d e  w i t h  t h e  f i r s t  t e r m  o f  t h e  a s y m p t o t i c  e x p a n s i o n  o f  E ( 2 ~  o b t a i n e d  in  p e r t u r -  
b a t i o n  t h e o r y  w i t h o u t  e x c h a n g e .  T h i s  t e r m  has  t h e  fo rm - - C s / R s ;  v a l u e s  o f  t h e  c o n s t a n t  C 6 
a r e  g i v e n  in  [ 1 6 ] .  

The wave f u n c t i o n s  ~ and ~0 b o f  i s o l a t e d  a toms  a r e  e x p r e s s e d  by S l a t e r  d e t e r m i n a n t s .  
The d e t e r m i n a n t  c o n s i s t s  o f  t h e  p r o d u c t s  o f  t h e  s p i n  f u n c t i o n s  and p s e u d o f u n c t i o n s  o f  t h e  
valence electrons for the metal atom [13] while for the helium atom it consists of two elec- 
tron orbitals, whose spatial part is represented in our calculations as an expansion in 20 
Gaussian functions [16, 17]. The integrals are calculated from the formulas of [17]. As 
in [ii], we use approximate formulas to calculate the integrals, which contain the squared 
perturbation operator. 

The results of EPT calculations of ~(R) are shown in Figs. 1 and 2, where they are com- 
pared with the data of nonempirical and semiempirical calculations [3, 5, 7, 8]. As we see, 
the agreement is good (the deviations range from 1 to 20%). The sole exception are the re- 
sults for a Be-He pair of atoms: the discrepancy with the results of [7] reaches 50%. This 
discrepancy, however, can be explained by the fact that, as already mentioned, [7] did not 
include the configurational interaction and the results are too high. 

The atomic interaction potential energies, calculated by the EPT method as well as taken 
from the literature [3, 5, 7, 8], were approximated by the Born potential 

(R) = B exp (-- R / p), 

where B and p are constants. This is possible since EPT calculations of ~(R) showed that 
for the cases under consideration the potential wells are not deep (several degrees). The 
values found for ~ and Rmi n are close to those obtained in other calculations. For example, 
for a Mg-He pair of atoms, according to our calculations as well as the calculations of [5], 
g = i.i0 -s a u. * 3 K and Rmi n = 10.5 a.u. 

Values of the cross section Qx2(x, I) as a function of a = In(B/k T) for the Born poten- 
tial are given in [18]. The calculated values of the diffusion coefficient and the exponent 
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Fig. i. Comparison of the potential energy (a u.) of atomic interaction, 
calculated by the EPT method [a) Rb-He, b) Na-He, c) K-He, and d) Li-He], 
with the results of nonempirical [3] (Li-He, curve 4) and semiempirical 
calculations [8] (Rb-He, curve i, Na-He, curve 2 and K-He, curve 3). 
R, a . u .  

Fig. 2. Comparison of the potential energy (a u.) of atomic interaction, 
calculated by the EPT method [a) Cs-He, b) Mg-He, and c) Be-He], with the 
results of semiempirical calculations [8] (Cs-He, curve i) and nonempirical 
calculations (data of [5] for Mg-He, curve 2 and data of [7] for Be-He, 
curve 3). R, a u. 

TABLE 1. Calculated EPT Values of PDI2 , n, and 
the Ratio of the EPT Values of PD12 to Those Cal- 
culated from Nonempirical and Semiempirical Poten- 
tials (d I) and to the Experimental Values (d 2) 

Mixture T, K PD~, N~ dt da n 

s e c  

Li--He 
Na--He 

K--He 

1210 
655 
473 
723 

Rb--He 720 
Cs--He 723 
Be--He 2430 
Mg--He I 1030 Ca--He 1280 
St--He 1230 
Ba--He 1290 

88,4 
20,8 
11,1 
19,5 

18,2 
16,7 

280,3 
44,0 
49,2 
40,5 
38,7 

0,96131 1,o1181 
o,9![81 

o,97181 
0,95[8] 
1,1o[71 
0,99[5] 

o,951191 
1,041201 
0,751201 
0,931211 

0,821221 

1,091231 

1,97 
i ,95 

1,95 

1,94 
1,95 
1,82 
1,82 
1,88 
1,88 
1,88 

of n(PDl2 - T n) from the atomic interaction potential energies, obtained by the EPT method, 
are shown in Table I. The table also compares the values obtained for PDI2 with those cal- 
cualted from nonempirical and semiempirical potentials [3, 5, 7, 8]. The discrepancies are 
small and are 10% in the worst case (Be-He). Comparison of the EPT calculated values of 
PD12 with the available experimental data shows that the deviation does not exceed the band 
of experimental error [19-23]. The above-mentioned agreement indicates that the calculated 
values of PD12 are rather reliable. 

We also carried out experiments on the diffusion of monoatomic barium vapor in helium 
by the Stefan method on equipment described in [23]. To eliminate the interaction of the 
molten barium with the diffusion tube walls the tube was made of tantalum (diameter 14 mm, 

1408. 



V t9-71_ 

;0 -2 

if  5 

,Tj~t 
D 

7 

J I I 

7 9 JoVT 

Fig. 3. Temperature dependence of the barium 
saturated vapor pressure Ps (Pa): i) data of 
[24], 2) [25], 3) [26], 4) [27], 5) [28], and 
6) [29]. The points denote the values of Ps ob- 
tained by processing experiments on barium va- 
por diffusion in helium; the dashed line repre- 
sents their approximation dependence. 104/T, I/K. 

height 55 mm). The temperature range of the experiments was 1170-1420 K. If the data on 
the evaporation of a metal is to be processed in order to determine the diffusion coeffi- 
cient, it is necessary to have the values of the pressure Ps of its saturated vapor. The 
published data on barium Ps (some are given in Fig. 3), however, differ greatly. When avail- 
able data are used in processing diffusion experiments the resulting values of D12 differ 
by a factor of up to three. In addition the difference in the slopes of the temperature 
dependences Ps affects the exponent n of the temperature dependence of D12. For example, 
the use of Ps from [27] and from [28] results in values of n that differ threefold. Accord- 
ingly, we reproduced the value of Ps for barium by processing the diffusion experiments, using 
the values of D12 calculated by the EPT method. The approximated dependence (confidence 
coefficient 0.95) in the temperature range from 1170 to 1420 K has the form 

9 0 2 0 ~ 4 6 0  lgp ,~- - - (5 ,250 .26)  
T 

(Ps, Pa). The results are shown in Fig. 3. The reproduced values of Ps lie between the re- 
sults of [27] and [28]. 

As a whole the calculations carried out show that fairly reliable results are obtained 
when EPT is used to compute the potential energy of the atomic interaction of alkali and 
alkali-earth metals with helium for subsequent determination of the diffusion coefficient. 

NOTATION 

P is the pressure of the gas mixture; Dl2 is the binary diffusion coefficient; k is 
the Boltzmann constant; T is the temperature; mz2 is the reduced mass; R is the distance 
between the centers of mass of the interacting atoms; Z~ is the charge of the core of the 
metal atom; Z b = 2 is the charge of the core of the helium atom; N<. is the number of valence 
electrons in the metal atom; N b = 2 is the number of electrons of the helium atom; r~k is 

the distance from the center of mass ~ of the atom to the electron k (~ = ~, b; k = i, j); 

C~ is the constant of long-range interaction; ~ is the depth of the well of the atomic inter- 
action potential energy; and Rmi n is the distance to the point of minimum atomic interaction 
potential energy. 
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